黄立,张静怡,吴昊,路奇.针对气味数据的交互式聚类可视分析框架[J/OL].计算机辅助设计与图形学学报:1-17[2020-07-16]. http://kns.cnki.net/kcms/detail/11.2925.TP.20200713.1012.022.html.
Abstract
自然界中的气味通常是多种成分的混合物,相比图像和声音具有特殊的数据复杂性,且由于缺少有效的表示方法导致气味研究相对滞后.聚类分析是研究气味的一个重要方法,有助于增进对气味的理解、识别、合成和设计,然而大部分高效的聚类方法都是被动的,用户往往期望参与到计算过程中,利用领域知识和经验进行交互式聚类.气味数据存在多种可能的聚类方式,用户需要对多组聚类结果进行比较,以确定最优的聚类.提出一个对气味数据进行交互式聚类的可视分析框架.首先使用人工神经网络结合多分子气味的高维化学信息和感官描述信息,计算一种低维度的气味嵌套表示;然后基于高斯混合模型的交互式聚类算法让用户对气味嵌套进行符合预期的聚类和重新聚类;最后用户可通过聚类可视化视图比较多组聚类结果的异同,增进对气味数据的理解,从而找到最佳的聚类方式.通过实验和2位领域专家的测试与评估,验证了该可视分析框架的有效性.